

SOME ADVANCES IN DOSE MEASUREMENT WITH MOSFET FOR PORTABLE INSTRUMENTATION

Alberto J. Palma Professor of the Electronics Departament University of Granada (Spain)

RAD 2012

- Research group
- Introduction
- Low cost pMOS as dosimeter
- Procedures of measurement
 - Pulsed biasing (PB)
 - Two currents method (2CM)
 - Three currents method (3CM)
- Portable dosimetry system
- Conclusions
- Aknowledgements

RESEARCH GROUP

Interdisciplinary spanish group:

- PhDs in Physics
- PhDs in Electronic Engineering
- PhD. students in Telecommunications Eng.
- Several Hospitals in Spain (Granada and Málaga)
- Main topics in dosimetry:
 - MOSFET electrical and thermal characterization
 - Monte Carlo simulation of radiation-matter interaction
 - Measurement science
 - Design and testing of electronic instrumentation
- We offer our experience for collaboration

INTRODUCTION

- Scope: Dose verification systems (DVS) based on MOSFETs mainly for medical use.
- High reliable commercial available DVS:
 - Best medical Canada systems (BM)
 - REM Oxford Ltd. (REM)
 - One Dose by Sicel Tech.? (OD)
- Some little disadvantages
 - Wired sensors for bias purposing (BM, REM)
 - Short dose range (OD)
 - Expensive RADFETs (BM, REM, OD)

INTRODUCTION

Our approach

- Use of low-cost general-purpose MOSFET as dosimeters
- Wireless and reusable sensors without bias during irradiation

Drawbacks of our approach:

- Low sensitivity to radiation.
- Low signal-to-noise ratio (SNR)
- Low linear range.
- **Objective:** overcoming the above problems

LOW COST pMOS

Universidad de Granada

PROCEDURES OF MEASUREMENT State of the art

Ionizing radiation creates charge in the oxide: Threshold voltage, V_t, is the dosimetric parameter

$$\frac{\Delta}{V_t} \gg 0$$
$$\Delta \beta < 0$$

• Measurement of V_t at constant drain current

$$V_{\text{GD}} = 0). \text{ (BM, REM, OD)}$$
$$I_D = -\frac{\beta}{2} (|v_{GS}| - |V_t|)^2$$
$$\beta \approx cte \quad \Rightarrow \quad \Delta |V_t| \approx \Delta |V_S|$$

PROCEDURES OF MEASUREMENT State of the art

Thermal compensation techniques

Universidad de <mark>Gr</mark>anada

PROCEDURES OF MEASUREMENT Pulsed biasing (PB)

SNR improvement

- Read-time instabilities caused by low frequency noise (LFN) (due to near-interface and interface states)
- How can LFN be reduced? Chopping the drain current as in other experimental techniques (i.e. spectroscopy) and averaging

PROCEDURES OF MEASUREMENT Two currents method

- Linear range improvement
 - Reducing $\Delta\beta$ effect in ΔV_t

$$I = \frac{\beta}{2} \left(V_s - \left| V_t \right| \right)^2$$

• pre- and post-irradiation parameters at constant current *I*:

$$|V_t| = V_s - \sqrt{\frac{2I}{\beta}} \Longrightarrow \left\{ \begin{array}{c} \left| V_t^{post} \right| = V_s^{post} - \sqrt{\frac{2I}{\beta^{post}}} \\ \left| V_t^{pre} \right| = V_s^{pre} - \sqrt{\frac{2I}{\beta^{pre}}} \end{array} \right\} \quad \Delta |V_t| = \Delta V_s - \sqrt{2I} \left(\sqrt{\frac{1}{\beta^{post}}} - \sqrt{\frac{1}{\beta^{pre}}} \right)$$

PROCEDURES OF MEASURMENT Two currents method (TCM)

Linear range improvement

• Using two drain currents for read-out:

$$\Delta |V_t| = \Delta V_{S1} - \sqrt{2I_1} \left(\sqrt{\frac{1}{\beta^{post}}} - \sqrt{\frac{1}{\beta^{pre}}} \right) \qquad \Delta |V_t| = \Delta V_{S2} - \sqrt{2I_2} \left(\sqrt{\frac{1}{\beta^{post}}} - \sqrt{\frac{1}{\beta^{pre}}} \right)$$

• Threshold voltage shift without $\Delta\beta$ interference

$$\Delta |V_t| = \Delta V_{S1} + \frac{\Delta V_{S2} - \Delta V_{S1}}{1 - \sqrt{\frac{I_2}{I_1}}}$$

PROCEDURES OF MEASUREMENT Results (PB+TCM)

Linearity improvement

Sensitivity decay coefficient, mean sensitivity and the linear limit (up to 5%).

DC modes

-0.095

19.7

10.3

-0.113

20.0

8.8

-0.057

19.2

16.8

I_{ZTC}

-0.153

20.6

6.8

		1.02]
	Normlized Sensitivity	1.00 -		•	•		MOSFET P2 ⊙ Sen V _S (I _{ZTC} ● Sen V ₁ . 2 Ic	;) ts
		0.98 -		· ~ .	··· · · · · · · · · · · · · · · · · ·	•	• •	
		0.96 -		y = -1.06E-032 $R^2 = 5.22$	× + 1.01E+00 20E-01	·····		
vity		0.94 -	y = -3.35E-03x + 1.01E+00 $R^{2} = 9.17E-01$				°`````	
		0.92					1	
		0		5	10 Dose	15 • (Gy)	20	25
es		PB			20 % reduction of SD			
ТСМ		I _{ZTC}	1	ТСМ				

$$\sigma_{Vs}^{DC} = 45.8 \,\mu V$$
$$\sigma_{Vs}^{PB} = 36.4 \,\mu V$$

Universidad de <mark>Granada</mark>

RAD 2012, Niš (Serbia)

m (mV/Gy²)

Mean Sensitivity (mV/Gy)

Linear Range (Gy)

PROCEDURES OF MEASUREMENT Three currents method (ThCM)

- Thermal compensation
 - Starting hypothesis:

$$\Delta |V_t| = \Delta V_{S1} + \frac{\Delta V_{S2} - \Delta V_{S1}}{1 - \sqrt{\frac{I_2}{I_1}}}$$
$$\Delta V_{S1}(T) = \Delta V_{S1}^0 + \alpha_1 \Delta T$$
$$\Delta V_{S2}(T) = \Delta V_{S2}^0 + \alpha_2 \Delta T$$
$$\Delta |V_t|(T) = \Delta |V_t^0| + \alpha_{|Vt|}(T - T_0)$$

• Experimentally verified

PROCEDURES OF MEASUREMENT Three currents method (ThCM)

- Thermal compensation
 - $\Delta |V_t|$ thermal compensated

$$\Delta |V_t| = \Delta V_{S1}^0 + \frac{\Delta V_{S2}^0 - \Delta V_{S1}^0}{1 - \sqrt{\frac{I_2}{I_1}}}$$

• Additional current: I_3

$$\Rightarrow \Delta V_{S1}^0 = \Delta V_{S1} + \left(\Delta V_{S3} - \Delta V_{S1}\right) \frac{\sqrt{I_1 - \sqrt{I_{ZTC}}}}{\sqrt{I_1 - \sqrt{I_3}}}$$

$$\Delta V_{S2}^{0} = \Delta V_{S2} + (\Delta V_{S3} - \Delta V_{S2}) \frac{\sqrt{I_2} - \sqrt{I_{ZTC}}}{\sqrt{I_2} - \sqrt{I_3}}$$

• Simplification
$$I_1 = I_{ZTC}$$

$$\Delta |V_t| = \Delta V_{S,ZTC} + \frac{\Delta V_{S2}^0 - \Delta V_{S,ZTC}}{1 - \sqrt{\frac{I_2}{I_{ZTC}}}}$$

Universidad de <mark>Granada</mark>

PROCEDURES OF MEASUREMENT Results (ThCM)

Thermal compensation:

• Reduction in a factor of 50 in the thermal drift

Universidad de Granada

Sensor Module

 JFET as a switch (shortcircuited during irradiation and storage and open during read-out)

Reader Unit

Dose measurement process

- Zeroing:
 - Measurement and storage of pre-irradiation $V_{\rm S}$ at the two (three) drain currents
- Irradiation
- Wait for short-term fading (120 -180 s)
- Dose measurement
 - Read the pre-irradiation values
 - Measurement and storage the post-irradiation V_S at the two (three) currents
 - Dose calculation (calibration is required)

- Irradiation conditions
 - Theratron-780 with a ⁶⁰Co source and a field of 25 x 25 cm²
 - MOSFETs, in electronic equilibrium condition, located at 80 cm of the isocentre

PORTABLE DOSIMETRY SYSTEM Results

Sensitivity per session

 $S = \frac{\Delta |V_T|}{D}$

A pre-irradiation of 30 Gy is required for reproducibility of S

PORTABLE DOSIMETRY SYSTEM Results

Radiation response

PORTABLE DOSIMETRY SYSTEM Technical specifications

Temperature range	10 − 40 °C
Resolution	1 cGy
Accuracy	± 3 %
Linear range	15 Gy > 80 Gy*
Thermal drift	< 3mGy/°C
Delay after irradiation	2-3 minutes

* with recalibrations every 15 Gy

CONCLUSIONS

- Procedures of dose measurement for linearity and SNR improvement and thermal drift reduction
- Portable dosimetry system based on commercial and standard MOSFET sensor
 - Wireless sensor
 - Reusable sensor (up to 80 Gy with recalibration each 15 Gy)
 - Thermal compensation without additional devices (3 mGy/°C)

AKNOWLEDGEMENTS

- University Hospitals "San Cecilio" and "Virgen de las Nieves" of Granada (Spain) for permitting us to use their installations
- Spanish and Andalusian (regional) governments for funding, partially supported by European Regional Development Funds

SOME ADVANCES IN DOSE MEASUREMENT WITH MOSFET FOR PORTABLE INSTRUMENTATION

Alberto J. Palma Professor of the Electronics Departament University of Granada (Spain)

RAD 2012